Sixth Semester B.E. Degree Examination, June/July 2015 Computer Integrated Manufacturing

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

- 1 a. Define Automation. Explain the different types of automation. (08 Marks)
 - b. Explain the following automation strategies:
 - i) Specialization of operator ii) Online Inspection. (04 Marks)
 - c. The parts produced in a certain batch has to be processed through an average of 6 machines. There are 20 new batches of parts launched each week. Other data as follows:
 - i) Average operation time = 0.1 Hr ; ii) Average setup time = 5 Hr ;
 - iii) Average non operation time = 10 Hr; iv) Average Batch size = 25 parts.

 There are 18 work centers in the plant and the plant operates for an average of 70 production Hr/week. Determine i) Manufacturing lead time ii) Plant capacity iii) Production rate iv) Plant utilization. (08 Marks)
- 2 a. Explain Synchronous transfer method and Asynchronous transfer method of work transport in automation. (08 Marks)
 - b. Explain with neat sketches, the following transfer mechanisms:
 - i) Walking beam transfer bar system ii) Geneva mechanism.
 - (12 Marks)
- 3 Explain the following related to analysis of an automated flow lines:
 - a. Partial automation.
 - b. Lower bound approach.
 - c. Upper bound approach.
 - d. Effect of storage.

(20 Marks)

(06 Marks)

- 4 a. Explain the following terms related to line balancing:
- iii) Line balancing.
- i) Total work context time ii) Assembly line balance
 - Assembly line dalance iii) Line dalancing.
 - b. The table below defines the precedence relationships and elements times for a new model:
 - i) Construct the precedence diagram
 - ii) If the Ideal time = 1 min
 - iii) Use Kilsridge and Westers method to assign the work station to each element and compute the balance delay and line efficiency. (14 Marks)

Work element	1	2	3	4	5	6	7	8	9	10	11	12
Te(min)	0.25	0.45	0.35	0.4	0.32	0.2	0.27	0.7	0.6	0.38	0.5	0.43
Preceded by	-	1	1	I	2	2,3	4	4	5	6,7	8	9,10,11

PART - B

- 5 a. List the principles used in product design for automated assembly.
 - (06 Marks)

b. With a neat sketch, explain elements of parts delivery system.

(08 Marks)

c. Define AGVS. List the advantages and applications of AGVS.

(06 Marks)

10ME61

U		with a block diagram, explain variant CADD system.	(10 Marks)			
	b.	What is Material requirement? Explain the structure of a MRP system.	(10 Marks)			
7	a.	Discuss the advantages and disadvantages of CNC systems.	(10 Marks)			
b.	Explain the fundamental steps involved in part programming for turning and m					
		1 mining and mining	(10 Marks)			
8	a.	Explain the different configuration of robot, with neat sketches.	(12 Marks)			
	b.	Explain the following terms related to robots:	(12 Mulhs)			
		i) End effectors ii) Programming methods.	(08 Marks)			
